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The nervous system of the bowel regulates the inflammatory
phenotype of tissue resident muscularis macrophages (MM), and
in adult mice, enteric neurons are the main local source of colony
stimulating factor 1 (CSF1), a protein required for MM survival.
Surprisingly, we find that during development MM colonize the
bowel before enteric neurons. This calls into question the re-
quirement for neuron-derived CSF1 for MM colonization of the
bowel. To determine if intestinal innervation is required for MM
development, we analyzed MM of neonatal Ret−/− (Ret KO) mice
that have no enteric nervous system in small bowel or colon. We
found normal numbers of well-patterned MM in Ret KO bowel.
Similarly, the abundance and distribution of MM in aganglionic
human colon obtained from Hirschsprung disease patients was nor-
mal. We also identify endothelial cells and interstitial cells of Cajal
as the main sources of CSF1 in the developing bowel. Additionally,
MM from neonatal Ret KOs do not differ from controls in baseline
activation status or cytokine-production in response to lipopolysac-
charide. Unexpectedly, these data demonstrate that the enteric ner-
vous system is dispensable for MM colonization and patterning in
the bowel, and suggest that modulatory interactions between MM
and the bowel nervous system are established postnatally.
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Muscularis macrophages (MM) are tissue resident macro-
phages found within and between the circular and longi-

tudinal muscle layers of the bowel wall. MM interact closely with
enteric neurons in the myenteric plexus (1, 2) and represent a
unique population of bowel macrophages that differs morpho-
logically (3), transcriptionally (1), and likely functionally from
neighboring macrophages in bowel mucosa and lamina propria.
Initial studies of MM in bowel muscle layers reported frequent

tight contacts between macrophage processes and myenteric neurons
in a “lock-and-key” configuration (2, 4). This suggested close com-
munication between these cell types. However, signals exchanged
between the bowel nervous system and MM are just beginning to be
characterized. A recent study reported that MM produce bone
morphogenetic protein 2 (BMP2), which alters enteric neuron de-
velopment and influences bowel motility (5). The same study in-
dicated that enteric neurons are the main source of the MM survival
factor colony stimulating factor 1 (CSF1) in the adult bowel. Neu-
ronal signaling within the bowel was also reported to skew MM
toward an antiinflammatory, tissue protective phenotype (1, 6).
Investigation of neuronal signaling to MM has thus far been

limited to adult animals. However, MM and enteric neurons exist
in close contact for days within the developing bowel. Further-
more, Op/Op mice with mutant Csf1 and consequent MM de-
pletion have defects in adult enteric nervous system (ENS)
patterning (5, 7), implying that signaling during development
between MM and the ENS has lasting consequences. Clarifying
the developmental interplay between enteric neurons and MM

may be particularly relevant to understanding what role, if any,
MM have in the pathogenesis of Hirschsprung associated en-
terocolitis (HAEC). Hirschsprung disease (HSCR) is a birth
defect where the ENS is absent from the distal bowel. HAEC is a
form of severe persistent bowel inflammation that is the leading
cause of death in children with HSCR (8, 9). Although several
factors may contribute to HAEC (10), pathophysiologic mech-
anisms leading to excess inflammation are not well understood
and the role of MM in HAEC has never been examined.
To determine if the ENS is important for MM development,

we analyzed the bowel of Ret knockout (Ret KO) mice (11),
which have no enteric neurons or enteric glia in the small bowel
or colon. We find, surprisingly, that newborn Ret KO muscularis
externa contains normal numbers of well-patterned MM that are
phenotypically similar to control MM. Consistent with this obser-
vation, we show that the main CSF1 mRNA sources in developing
bowel are nonneuronal, and include endothelial cells and inter-
stitial cells of Cajal (ICC). Lipopolysaccharide (LPS) treatment of
muscularis externa to activate Toll-like-receptor 4 (TLR4) led to
similar MM responses in Ret KO vs. control tissue. These findings
suggest that neuronal circuitry responsible for modulating MM
activation in adults is not present or fully mature in newborn bowel
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and that enteric neurons are not needed to recruit or pattern MM
in the bowel wall.

Results
Muscularis Externa Colonization by MM During Development Does
Not Require Enteric Neural Crest-Derived Cells. Vagal enteric neu-
ral crest-derived cells (ENCDC) that become neurons and glia of
the ENS first invade the bowel foregut at embryonic day 9.5
(E9.5) in mice and then migrate through the bowel in a ros-
trocaudal direction (12). By E12.5, ENCDC reach midcolon and
by E14.5 the bowel is fully colonized by ENS precursors. MM
have been reported in the bowel as early as E15.5 (4), but
whether MM are present before ENCDC colonization was not
known. Since adult enteric neurons produce CSF1, which sup-
ports MM survival, we hypothesized ENCDC should colonize
fetal bowel before MM to create a hospitable environment. To
test this hypothesis, we used TuJ1 antibody, which binds neuron-
specific β3 tubulin, to label enteric neurons in WT mice. TuJ1
identifies all bowel regions that contain ENCDC (13–15) be-
cause enteric neurons differentiate alongside migrating ENCDC.
MM were identified with Iba1 antibody commonly employed for
central nervous system microglia staining. We confirmed Iba1
labels all MM in the developing bowel using Cx3cr1-EGFP re-
porter mice that express EGFP in all bowel macrophages (Fig.
S1). Iba1 also stains all CD68+ human MM (Fig. S2). Iba1+ cells
were present in the outer bowel wall where muscle layers develop
as early as E9.5, a time when ENCDC first invade the foregut
(Fig. 1A). At E12.5, MM are present throughout the small bowel
alongside enteric neurons (Fig. 1B). However, MM are also
present in the distal colon, which lacks ENCDC at this age (Fig.
1C), raising the possibility that colonization of fetal bowel by
MM does not require the ENS. To definitively determine if ENS
is needed for MM colonization of the bowel, we analyzed mus-
cularis externa of neonatal (postnatal day, P0) Ret KO mice that
are completely missing enteric neurons and glia in the small
bowel and colon. Surprisingly, the density and distribution of
MM in muscularis externa of P0 Ret KO mice closely matched
littermate controls, where enteric neurons were visualized with HuC/

D antibody and nerve fibers can be seen with TuJ1 antibody (Fig. 1
D–F and Fig. S3A). In Ret KO mice, there are occasional extrinsic
nerve fibers seen with TuJ1 antibody, but too few nerve fibers to
account for MM patterning in muscularis externa (Fig. S3B).
To determine if ENS is required for MM bowel colonization in

humans, we analyzed enteric neuron-containing (ganglionic) and
enteric neuron-deficient (aganglionic) colon segments obtained
from children with HSCR at the time of pull-through surgery.
Similar to findings in mice, there was no difference in Iba1+ MM
number or distribution in the muscularis externa of ganglionic vs.
aganglionic human colon (Fig. 2). This suggests that enteric
neurons are not required for MM colonization and patterning in
the bowel wall of mice or humans.

MM Do Not Distribute Along Vasculature in Muscularis Externa, but
Closely Associate with ICC and PDGFRα+ Fibroblast-Like Cells. Post-
natal MM appear evenly distributed across muscularis externa
with nonoverlapping processes. Because this patterning does not
rely on the ENS, we determined whether MM closely associate
with other muscularis cell types. Platelet endothelial cell adhesion
molecule (PECAM) staining clearly shows MM are not patterned
by blood vessels (Fig. 3 A–C). Some MM closely associate with
cKIT+ cells of the very dense ICC network (Fig. 3 D–F), as pre-
viously reported (16, 17). MM also closely associate with
PDGFRα+ fibroblast-like cells (Fig. 3 G–I). These associations
are similar to those between MM and enteric neurons (Fig. 1D)
(1, 2, 5). However, these occasional contacts cannot fully account
for the regular patterning of MM across the muscularis externa.

Developing and Adult Bowel Contain Nonneuronal CSF1 Sources. Op/
Op mice that lack CSF1 are devoid of MM (7), suggesting that
CSF1 is a key survival factor for these cells. It has been proposed

Fig. 1. MM colonize the bowel with or without enteric neurons. (A) Sagittal
section ofWT E9.5 foregut stained with Iba1 antibody (red) andwith DAPI (blue).
This shows Iba1+ macrophages present in the bowel at E9.5. (B) WT E12.5 whole-
mount small intestine stained with Iba1 (red) and TuJ1 (green) antibodies. (C) WT
E12.5 whole-mount colon stained with Iba1 (red) and TuJ1 (green) antibodies.
This shows Iba1+ macrophages in E12.5 WT colon that is not yet colonized by
ENCDC. (D and E) Whole-mount P0 muscularis externa from control and Ret KO
distal small intestine stained with Iba1 (red) and HuC/D (green) antibodies. Ret
KO bowel is devoid of HuC/D+ enteric neurons, but has well patterned Iba1+ MM
present in normal abundance. (F) Quantitative analysis of Iba1+ cell density in
small bowel showed no statistically significant difference between WT and Ret
KO small bowel (Student’s t test, P > 0.05, n = 8 mice per genotype). NS, not
significant. Error bar = SEM. (Scale bar: 100 μm.) Scale bar in C applies to B–E.

Fig. 2. MM are present in normal abundance and distribution in human
aganglionic colon from children with Hirschsprung disease. (A and B) Human
colon was stained with antibodies to TuJ1 (green), Iba1 (red), and with the
nuclear dye DAPI (blue). Iba1+ macrophages are present in ganglionic (A)
and aganglionic (B) human muscularis externa in normal numbers and with
normal distribution across muscle layers. (Scale bar: 100 μm.) (C) Quantitative
analysis of MM abundance in layers of the muscularis propria. CM, circular
muscle; LM, longitudinal muscle; MP, myenteric plexus. Student’s t test, P >
0.05 for all comparisons. n = 8 ganglionic and 8 aganglionic. Error bar = SEM.
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that enteric neurons are the primary source of CSF1 in adult
mice (5). However, our finding of well-patterned MM in P0 mice
lacking enteric neurons strongly suggests that alternative
CSF1 sources exist, at least in the developing mouse bowel. To
test this hypothesis we used FACS on bowel from Wnt1Cre;
tdTomato mice (1, 18–24) to isolate ENS (tdTomato+) and non-
ENS (tdTomato−) cells. Csf1 expression was detectable in both
ENS and non-ENS cells at E9.5 by qRT-PCR, but expression
increased dramatically as development progressed (Fig. 4A).
Interestingly, at E13.5 and E17.5 Csf1 mRNA levels were
several-fold higher in non-ENS cells than in the ENS lineage
(Fig. 4A), consistent with the observation that ENS-derived
CSF1 is not needed for MM to colonize the bowel during fetal
development. As further validation, we measured Csf1 mRNA
levels in E13.5 bowel of a newly generated ENS reporter line
called Ednrb-EGFP-L10A (Fig. S4). Similar to data in Wnt1Cre;
tdTomato mice, Csf1 mRNA was much less abundant in ENS
compared with non-ENS lineage cells (Fig. S4H). Additionally,
whole bowel Csf1 mRNA levels did not differ significantly in P0
Ret KO mice where the ENS is missing compared with controls
(Fig. 4B), further implicating non-ENS cells as CSF1 sources in
the developing bowel. To identify the nonneuronal CSF1 sources
in the developing bowel, we measured Csf1 mRNA in selected
non-ENS cell types, including FACS-sorted epithelial cells, en-
dothelial cells, and ICC from E17.5 bowel. We find that Csf1 is
most highly expressed in endothelial cells and ICC, with signif-
icantly less expression in ENS, and virtually no expression in
epithelial cells (Fig. 4C).
We next sought to determine when the ENS becomes the pri-

mary Csf1 source in postnatal bowel muscularis. Comparison of
Csf1 levels in muscularis ENS vs. non-ENS cells at P0, P14, and
10- to 12-wk-old mice demonstrated increasing Csf1 expression in
the ENS with age, with ENS Csf1 levels surpassing non-ENS cells
by P14 (Fig. 4D). Interestingly, even in adult mice where ENS Csf1
expression is highest, there was significant Csf1 expression in non-
ENS lineage cells of bowel muscularis (Fig. 4D).

Expression of Selected MM Genes. To further characterize normal
MM development, we measured mRNA levels for select bowel
macrophage genes over time. Selected genes included H2Ab1
(encoding MHC II), Bmp2, known to regulate enteric neuron
activity in adult colon, as well as Adrb2 and Chrna7a, which relay
neuronal antiinflammatory signals in MM. Prenatal data repre-
sents expression in all CD11b+/F4/80+ bowel macrophages be-
cause markers to differentiate prenatal MM from other bowel
macrophages are not available and we are unable to mechan-
ically separate prenatal muscularis from the rest of the bowel.
We find that bowel macrophages express relatively low but de-
tectable levels of H2Ab1, Bmp2, Adrb2, and Chrna7a prenatally,
with all genes expressed by E17.5 (Fig. 5 A–D). Consistent with
prior reports (4), H2Ab1 (MHC II) mRNA expression is negli-
gible in MM at P0 and does not become high until after P14 (Fig.
5E), although H2Ab1 was detected in macrophages from the
whole bowel at E17.5 (Fig. 5A). Postnatal Bmp2 and Adrb2 levels
increase with age (Fig. 5 F and G), whereas Chrna7a remains low
(note y axis scale in the figure) and relatively stable (Fig. 5H).

Enteric Neuron Absence Does Not Affect Baseline P0 MM Phenotype.
Although the ENS is not needed for MM survival or patterning, it
was unclear if the ENS altered normal macrophage phenotype or
function at P0. To assess the baseline activation and thus immu-
nostimulatory potential of MM developing without enteric neu-
rons or glia, we analyzed MM from P0 control and Ret KO mice
using flow cytometry. P0 MM of control and Ret KO mice were
readily detectable using the myeloid lineage marker CD11b and
macrophage-specific marker F4/80 (Fig. 6A) (25). MM were
present at similar frequencies in both control and Ret KO mice
(Fig. 6B), consistent with our immunohistochemistry (IHC) (Fig.
1). Ret KO and control CD11b+F4/80+ cells also expressed
equivalent levels of CSF1R (CSF1 receptor) (Fig. 6 C and D),
suggesting that Ret KO and control MM are equally poised to
respond to CSF1. Expression of the costimulatory molecules
CD40 and CD86, as well as major histocompatibility complex
(MHC) class II, was unaltered in mice lacking enteric neurons
(Fig. 6E). Like controls, Ret KO MM expressed these activation
markers at low levels, consistent with a nonactivated phenotype.

Fig. 3. MM do not distribute along endothelium in muscularis externa, but
many closely associate with ICC and PDGFRα+ fibroblasts. Postnatal (P2—P4)
muscularis externa whole mounts were stained with antibodies to MM marker
Iba1 (A, C, D, F, G, and I), endothelial cell marker PECAM (B and C), ICC marker
cKit (E and F), or fibroblast-like cell marker PDGFRα (H and I). Merged images
show howMMare positioned relative to other cell types in muscle layers of the
bowel wall (C, F, and I). (Scale bar for magnified Insets in F and I, 25 μm.)

Fig. 4. Csf1 is primarily expressed in non-ENS cells of fetal bowel and is only
highly expressed in ENS after P14. (A) Csf1 mRNA levels in sorted tdTomato+

ENS lineage cells and tdTomato− non-ENS cells from prenatal whole bowel
of Wnt1Cre;tdTomato mice. (B) Csf1 mRNA levels in P0 whole bowel from
Ret KO and control mice. (C) Csf1 expression measured in E17.5 sorted
tdTomato+ ENS cells, CD326+CD45−CD31− epithelial cells (EPI), CD31+ en-
dothelial cells (ENDO), and CD117+/CD45− ICC. (D) Csf1 mRNA level in sorted
tdTomato+ ENS lineage cells and tdTomato− non-ENS cells from isolated
circular and longitudinal muscle layers. n = 3 biological replicates for each
time point. **P < 0.01, *P < 0.05 Student’s t test (A, B, and D) or ANOVA with
multiple comparisons (C). Error bar = SEM. (Scale bar, 100 μm.)
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We also compared the expression of MM-relevant genes pre-
viously characterized in controls and found no difference in ex-
pression of H2Ab1, Adrb2, Bmp2, or Chrna7 in Ret KO at
P0 compared with controls (Fig. 6F). Thus, MM developing in the
absence of enteric neurons or glia appear phenotypically normal,
and enteric neurons are not needed to establish the resting phe-
notype of MM in neonatal mice.

P0 MM from Ret KO Mice Respond Normally to LPS. To determine if
Ret KO MM have an altered LPS response, P0 Ret KO or lit-
termate control muscularis externa was cultured 6 h with or
without LPS. Following treatment, we measured tissue mRNA
levels of the cytokines Il6 and Tnfα by qRT-PCR. We also
measured secreted IL-6 and TNF-α protein levels by ELISA;
however, TNF-α protein levels were below the limit of detection
in all samples. Additionally, we measured LPS response specif-
ically in MM by using FACS to isolate CD11b+F4/80+ MM from
muscularis externa after LPS treatment. We find that LPS re-
sponse was comparable for all measured parameters in control
and Ret KO mice (Fig. 7). Collectively, these data suggest the
ENS does not modulate early MM response to TLR activation
by LPS.

Discussion
ENS Is Not Required for Mouse or Human MM to Colonize Fetal Bowel.
MM are found in mouse bowel by E15.5 (4), confirming their
identity as true tissue resident macrophages. They are present
along the entire bowel length within and between circular and
longitudinal muscle, and often contact myenteric neurons and
extrinsic neuron projections (2, 5, 6, 26). In adults, prior studies
suggested that enteric neurons are a major source of the MM
survival factor CSF1. Unexpectedly, we found that MM coloni-
zation of the bowel precedes colonization by enteric neurons.
Iba1+ MM were observed in the region of developing muscle
layers as early as E9.5. By E12.5, Iba1+ MM are present
throughout the bowel, including the colon, which does not yet
contain ENCDC or enteric neurons. This suggests that de-
veloping MM do not require enteric neuron-derived survival
factors. Consistent with this hypothesis, Ret KO mice, which have
no enteric neurons or enteric glia in the small bowel or colon,
have normal numbers of well-patterned MM at birth. Normal
MM numbers were also seen in human aganglionic colon, sug-
gesting enteric neurons are not needed for initial patterning of
muscularis externa by MM in mice or humans.

Fig. 5. Gene-expression profiles for select bowel macrophage genes. (A–D)
CD11b+F4/80+ macrophages were sorted from C57BL/6 whole bowel at
prenatal time points (E9.5, E13.5, E17.5) and expression of select bowel
macrophage genes was measured using qRT-PCR. (E–H) CD11b+F4/80+ MM
were isolated from dissected muscularis layers at postnatal time points (P0,
P14, adult = 10- to 12-wk old) and expression of select bowel macrophage
genes was measured using qRT-PCR. n = 3 biological replicates per gene per
time point. **P < 0.01, *P < 0.05 ANOVA with multiple comparisons. Error
bar = SEM.

Fig. 6. Absence of enteric neurons does not affect muscularis macrophage
surface phenotype, expression of MM-specific genes, or baseline activation
state. P0 bowel muscle layers from control and Ret KO mice were analyzed
for surface markers by flow cytometry. (A) Representative flow cytometry
plots were pregated on live cells by forward and side scatter and exclusion of
live/dead dye. Numbers indicate the frequency of CD11b+F4/80+ macro-
phages among live cells. (B) Summary data show macrophage frequencies
among live cells. There was no statistically significant difference between
control and Ret KO (Student’s t test). (C) Representative histograms show
CSF1R expression on CD11b+F4/80+ macrophages compared with non-
myeloid (CD11b−) cells. (D) Csf1R level assessed by qRT-PCR in control and Ret
KO CD11b+F4/80+ MM relative to Gapdh. (E) Representative histograms
compare levels of CD40, CD86, and MHC class II in control and Ret KO
macrophages. There were no statistically significant differences between
control and Ret KO (Student’s t test). (F) Expression of select MM genes in P0
CD11b+F4/80+ MM from Ret KO and controls. n = 4 control and 3 Ret KO
mice (B, C, and E) and 4 control, 4 Ret KO mice (D and F).
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MM Patterning in Muscularis Externa. MM residing in muscularis
externa near enteric neurons exhibit clear patterning, with cell
bodies spaced at regular intervals and generally nonoverlapping
processes (1, 2, 5). Data from Ret KOmice suggest the ENS is not
required to achieve this regular distribution of MM in the post-
natal bowel. Furthermore, placement of MM cell bodies and
processes within bowel musculature does not clearly correlate with
the position of endothelial cells, ICC, or PDGFRα+ fibroblast-like
cells. It is possible that MM achieve regular spacing through self-
avoidance, similar to neurons and oligodendrocytes in the central
nervous system (27, 28). Furthermore, although ICC and fibroblast-
like cells do not appear to determineMM patterning, MM processes
and cell bodies frequently associate with both cell types, suggesting
functional interactions. Studies on MM-mediated ICC loss during
diabetic gastroparesis (29, 30) are beginning to shed light on MM–
ICC interactions, but MM interactions with fibroblast-like cells are
entirely uncharacterized.

Sources of CSF1 in Prenatal and Postnatal Bowel. Our analysis of
Csf1 expression suggests that the ENS is not the major source of
Csf1 in the prenatal bowel. Instead, Csf1 is highly expressed in
endothelial cells and ICC, but not in epithelial cells. It is possible
that other bowel cell types also make CSF1, but we did not have
tools to isolate these cell populations (e.g., smooth muscle, extrinsic
sympathetic and parasympathetic nerve fibers, and undifferentiated
mesenchyme). Alternatively, a local source of CSF1 may not be
required and circulating CSF1 may be sufficient to maintain MM.
Future studies with conditional deletion of CSF1 would be required
to distinguish these possibilities. It is also possible that prenatal and
adult MM may differ in their dependence on CSF1 for survival.

Analysis of bowel and muscularis externa from Csf1-deficient Op/
Op mice at embryonic and perinatal timepoints would clarify this
issue. Our findings in fetal bowel differ from results in adult mice,
where CSF1 in muscularis was reported to be primarily from enteric
neurons (5). Furthermore, although we confirmed that Csf1mRNA
is more abundant in the ENS than in other bowel cells at P14 and in
adults, non-ENS bowel cells continue to be a prominent source of
Csf1 after P14. One possible explanation for increased postnatal
CSF1 production from cells of the ENS lineage is that bowel col-
onization by bacteria enhances neuronal CSF1 production. Con-
sistent with this hypothesis, it has been shown that Csf1 expression
in enteric neurons is regulated by LPS and that muscularis Csf1
levels and MM number decreases with antibiotic treatment (5).
These observations suggest that Csf1 expression in fetal neurons
remains low because bacteria have not yet colonized the bowel.
Whether neuron-derived CSF1 is required for MM maintenance
remains to be seen. Interestingly, germ-free mice that would be
expected to have low levels of neuron-derived CSF1 do not have
apparent differences in MM cell number or density (4), suggesting
that nonneuronal sources of CSF1 may be sufficient to maintain the
MM population.

Development of Modulatory Neuro-Immune Interactions in Muscularis
Externa.Many examples of neuronal modulation of MM have now
been reported. Notably, vagus nerve stimulation of cholinergic
enteric neurons in close contact with MM decreases the ATP-
induced Ca2+ response in MM and reduces muscularis externa
inflammation in postoperative ileus (6). This effect relies on
α7nAChR cholinergic nicotinic receptors on MM and occurs in-
dependent of the spleen or adaptive immune system (6). Antiin-
flammatory MM phenotype is also induced by sympathetic
norepinephrine signaling in response to bacterial infection (1).
Signaling via β2AR β-adrenergic receptors alters gene expression
in MM, leading to up-regulation of tissue-protective genes like
Chi3l3 (chitinase 3-like 3) and Arg1 (arginase 1). Whether intrinsic
enteric neurons mediate this extrinsic sympathetic response
remains unclear.
In light of these studies, we hypothesized that MM in Ret KO

mice would be hyperactivated, because Ret KO mice are missing
enteric neurons and have defects in extrinsic sympathetic in-
nervation of the bowel. However, MM sorted from neonatal Ret
KO muscularis externa displayed no observable phenotypic
change compared with controls. Ret KO MM also had normal
cytokine production in response to LPS. The lack of a differential
LPS response in ex vivo muscularis externa may reflect the re-
quirement for intact extrinsic sympathetic and parasympathetic
connections for neuronal modulation of MM, as these connec-
tions are reduced in Ret KO (31) and severed in control ex vivo
preparations we used for LPS studies. Alternatively, the unaltered
in vivo baseline phenotype of MM from Ret KOs may indicate that
the mature neuro-immune circuitry responsible for modulating
MM activation is not yet in place at P0. Ret KO mice die as ne-
onates, so testing MM phenotypes at older ages is not possible in
this model system. Postnatal maturation of ENS–MM interac-
tions, however, seems likely because the ENS retains significant
plasticity following birth that may include generation of new en-
teric neurons (32). In rodents the proportion of cholinergic neu-
rons increases until P36 (33), and some enteric neurons do not
obtain mature dendritic and electrophysiological properties until
adulthood (34). Various environmental signals, such as intra-
luminal lipid and bacterial exposure, also impact postnatal enteric
neuron plasticity and signaling (1, 4, 5, 35, 36) and may have
important roles in shaping neuro-immune circuits in the bowel.
Clarifying which aspects of MM maturation are mediated by

the ENS or extrinsic neuronal activity is an important task for
future studies and may enhance our understanding of HAEC.
Although MM have been implicated in pathogenesis of several
gastrointestinal disorders, including diabetic gastroparesis (17,
30) and postoperative ileus (6, 26, 37), MM involvement in
HAEC has not been previously explored. Our data suggest
aganglionosis does not impact MM number or function at birth;

Fig. 7. MM from P0 mice lacking enteric neurons do not differ from control
mice in activation by LPS stimulation. (A and B) Analysis of mRNA levels for
Il6 and Tnf in whole muscularis and in isolated MM (D and E) following 6 h
ex vivo culture of muscularis with and without LPS. (C) Secreted IL-6 protein
levels following 6 h ex vivo culture of muscularis with and without LPS.
Muscularis qRT-PCR control n = 6, Ret KO n = 4 mice. MM qRT-PCR N= 6 mice
for each group. ELISA n = 4 mice for each group. Error bars = SEM. NS = P >
0.05. Data in C analyzed by two-way repeated-measures ANOVA, no sig-
nificant interaction between LPS treatment and genotype (P > 0.05). All
gene expression is relative to Gapdh.
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however, whether MM phenotype is subsequently altered in the
context of maturing neuro-immune circuits and microbial expo-
sure remains to be seen. Of note, Ret, the major gene involved in
HSCR pathogenesis, is itself expressed by a variety of immune
cells in the bowel, including T and B lymphocytes, NK cells, and
type 3 innate lymphoid cells (38–41). Furthermore, RET-signaling
controls proinflammatory programs in peripheral blood mono-
nuclear cells from HSCR patients and healthy donors (38).
Therefore, future studies elucidating ENS–MM interactions in
HAEC will need to consider non-ENS–mediated effects of Ret
loss in other immune cells.

Materials and Methods
Ret-TGM mice (RRID:MGI_3623107, called Ret KO) were previously described
(31). Cx3cr1-EGFP mice (B6.129P-Cx3cr1tm1Litt/J, stock #005582), tdTomato
mice [Gt(ROSA)26Sortm9(CAG-tdTomato)Hze, stock #007909], and Wnt1Cre mice
[Tg(Wnt1-GAL4)11Rth, stock #003829] were from The Jackson Laboratory.
The use and care of mice were approved by the Children’s Hospital of
Philadelphia Research Institute Institutional Animal Care and Use Commit-
tee. Ednrb-EGFP-L10a mice were made by cloning a EGFP-L10a fusion con-
struct (42) into a vector with endothelin receptor B regulatory elements. LPS
stimulation studies treated P0 bowel for 6 h in culture. Reagents, tissue
processing, IHC imaging, fluorescent activated cell sorting, qRT-PCR, and

statistical methods are described in more detail in SI Materials and Methods.
Paraffin-embedded de-identified human colon tissue from children with
Hirschsprung disease (ages ranged from 14 d to 6 mo 11 d) was obtained
from the Children’s Hospital of Philadelphia Pathology Laboratory as ap-
proved by The Committees for the Protection of Human Subjects (In-
stitutional Review Board) at The Children’s Hospital of Philadelphia.
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